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Abstract One of the most critical problems to be addressed by future generation socially-assistive
robots working in semi-organized social environments, such as shopping centers, nursing homes,
airports, hospitals, or assisted living centers, is the capability of human-aware navigation. Au-
tonomous navigation in a complex environment with people, staff with different roles, timetables,
and restrictions to access, among others, requires adapting to socially accepted rules. Consequently,
the path-planner must consider concepts related to proxemics and personal spaces of interaction
that include human-human, human-robot, or human-object combinations. Likewise, the speed of
approaching people, both to initiate communication or to navigate nearby, must be adapted to social
conventions. Some of these situations have already been studied in the literature with varying degrees
of success. However, the concept of time dependency or chronemics in the robot social navigation
has been poorly explored. Current algorithms do not take into account the social complexity of
real environments and their relationship with the time of day or the activities performed in these
scenarios. This article presents a new framework for robot social navigation in human environments,
introducing the concept of time-dependent social mapping. The main novelty is that the social route
planned by the robot considers variables that depend on the time and the scheduled center activities.
The article describes how the areas of interaction vary over time and how they affect human-aware
navigation. To this end, the proposed navigation stack defines a new function for time-dependent
social interaction space that takes continuous values and is configurable by the center’s staff. The
global path-planner uses this function to choose dynamically a socially accepted path to the target.
Then, the framework uses an elastic band path optimizer as a local planner, adapting the robot’s
navigation to possible changes during the trajectory. Several use cases in simulated caregiving
centers have been explored to validate the robot’s social navigation improvements using these
temporal variables.
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1 Introduction

The aging population is a demographic problem that modern societies will have to face in the
coming decades. Governments and institution’s decisions vary, ranging from basic social policies to
investments in technology that will facilitate an improvement in the elderly quality of life. In this
context, the use of social robots in assisted living environments will become a reality in the next
years. At present, there are many real situations in which collaboration between humans and robots
could improve older adults’ care. In the specific case of a care facility, for example, the possible
scenarios include physical or cognitive rehabilitation activities, social-emotional stimulation, the
accompaniment side-by-side of the older person while walking, or clinical staff support (1). In all
these situations, the robots must carry out a series of specific complex tasks, adapting their behavior
to people and the environment.

Social assistive robots, usually known as SARs, are no longer just autonomous platforms. Today
they require that their behaviors be socially accepted. Thus, these robots do not work alone and are
usually integrated into smart environments equipped with IoT technology and complex perceptual
architectures to make socially conscious decisions in real-time (2). These architectures model the
perceived information about humans, robots, and the environment to reason, interpret human
intentions and perform autonomously. The application of fuzzy logic in Human-Robot Interaction
could contribute to deal with the challenge of infer high-level human intention or activities and
improve robot’s social behavior in these complex environments (3)(4)(5). One of these essential
behaviors that the robot must be endowed with is navigating socially in an environment with people,
which includes planning and following paths in a social-aware fashion as an essential task to achieve
social acceptability (6).

Most works of literature are based on the concept of proxemics. Proxemics is defined as the study
of humankind’s perception and use of space (7). The robot has a socially accepted behavior if it can
move through the environment without disturbing people’s personal spaces or interrupting their
interaction with other people or objects in the environment. Social path planning in these scenarios
is usually solved following social mapping strategies that map regions of the environment in which
the robot should not navigate (8). Social mapping extends metric and semantic maps by including
social information of the environment. Consider the scenario depicted in Fig. 1a: the path planned
by the robot in a caregiving environment takes into account people who might be interacting with
some of the objects. The interaction space associated with an object is known as affordance (9). In
Fig. 1a, around the object table, its interaction space has been drawn in red during a group therapy
session with older people. Consequently, the robot avoids this area in its trajectory. However, the
object’s interaction space should not be static but should vary over time. In the above illustrative
example, the object table is not always being used. Indeed, its use depends on the therapeutic
session scheduled. Fig. 1b represents another situation, where the robot plans a different trajectory,
based on the activities schedule, without the risk of invading the object interaction space.

This dependence over time in social mapping is poorly studied in the robotic literature. However,
the time dependence in interactions between people is known in other disciplines as chronemics
(10). According to this theory, time influences human interactions, and the use of time can affect
movements, behaviors, or even, how long people are willing to listen. Hence, a social robot must
be able to take time into account when planning its trajectories in the environment with people.
For example, if an interaction between one person and another has just begun, an interruption due
to a robot’s navigation is perceived as worse than if the conversation takes longer. In the same
way, if an activity programmed in the agenda advertises the use of an object by a group of people,
time defines the occupation of space and how the robot’s navigation could disturb the activity
development. These situations are every day in museums, educational centers, shopping centers, or
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convention centers, where there is prior planning of the activities that will use the facilities. The
example described in Fig. 1 can be extended to other real scenarios in care facilities where activities
are governed by schedules established by the clinical or administrative staff.

(a) (b)

Fig. 1: Two different everyday scenarios in a caregiving center: a) The social path planned by the
robot takes into account that there is scheduled a therapy in the occupational therapy room; b)
Unlike the previous case, in this new scenario, there is not scheduled therapies in this room.

Unconsciously, we use the time in our daily lives when we think about where to go. Therefore, an
interesting topic is how to include the concept of time in the navigation of a social robot. Currently,
some solutions predict the position of people in the environment or whether they are using an
object at a specific instant of time. However, this is not enough for schedule-driven caregiving
centers, where it is complex to distinguish between an informal meeting in a room or group therapy
according to the information acquired by sensors. In the first situation, if the person enters the
room, it would not violate established social norms. On the other hand, in group therapy, the same
interruption would disturb the session. Likewise, it is easy to know if a TV is on or not, but it is
not the same if the TV is on for a playful purpose or if it is being used in a therapeutic session, for
example, in a session based on Serious Games. If the robot knows the center’s activity schedule, it
can plan trajectories that do not disturb the elderly and caregivers. Therefore, if its path planner
includes time, the path could be easily adapted and achieve a higher degree of social acceptance.

As can be appreciated in the problem definition, described in Fig. 1, robot navigation in an
environment with humans is extremely complex. In a simple case, it requires people’s detection and
tracking in the environment, modeling their personal interaction spaces and planning the path which,
besides, must be dynamic and adapt to changes. In more complex situations, such as those described
in this article, it is necessary to know which objects and people interact with and how this relates to
the caregiving center’s activities scheduled. All the above implies a complex and global perception
system, not only dependent on the sensors with which the robot is equipped. Most current systems
use environments with a sufficient number of deployed sensors (cameras, microphones, etc.), which
integrate all the information in a representation of the common knowledge. In this context, the
cognitive architecture CORTEX used in this paper and described in (11) is based on a collection of
agents (i.e., semi-autonomous functional units that collaborate using a common representation in
their pursuit of a common goal) that can operate anywhere in the deliberative-reactive spectrum.
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In this architecture, there are navigation, perceptual, and human-robot interaction agents, among
others, thereby facilitating the combined use of classic navigation and social rules. In addition, the
CORTEX architecture includes planning agents that, based on a specific domain, generate various
actions that the robot executes sequentially (12). As the proposed solution combines a global path
planner followed by a local one, this time-dependent navigation stack applies for other situations
where the robot must, for example, approach a person to interact with him instead of avoiding him
or leading people to another room in the same environment.

This paper presents a new human-aware robot navigation framework based on time-dependent
social mapping, where the path planning problem includes the use of the interaction spaces over
time, restricting or penalizing the robot’s path depending on the activities scheduled. This social
information is added on top of the free-space graph which is later used for path planning and
navigation. As the main contribution, this paper is the first one that includes and uses the concept
of chronemics to plan socially accepted paths for robot navigation. For this purpose, this framework
proposes a novel mathematical function for defining time-dependent social interaction spaces, which
models how the passage of time affects the spaces where people interact with objects or other
people. First, the navigation stack proposed in this paper uses a global path-planner algorithm
based on a cost map. The result of this global planner is a socially accepted path that takes into
account the spaces of interaction and time. The proposed framework uses a local planner that
optimizes the trajectory. Finally, this work includes different experiments in simulated scenarios
to validate the navigation stack. In these experiments, the robot plans socially accepted paths
and navigates through the environment. In addition, we have conducted tests in real scenarios, a
laboratory environment that simulates a caregiving center, to measure the proposal’s performance
in these situations.

This work is organized as follows: In section 2, a discussion of previous works related to robot
navigation in human-environments is provided. Section 3 presents an overview of the proposed
social navigation framework. Next, Section 4 describes the new model of time-dependent social
interaction spaces. In Section 5, the socially-accepted path planning algorithm presented in this
paper. Finally, Section 6 outlines the experimental results in both, real and simulated scenarios,
and Section 7 summarizes the conclusions and future works.

2 Related works

The use of social robots for assistive environments is becoming more widespread in recent years.
There are several works where socially assistive robots help older people in their daily tasks, for
example, monitoring their behavior and activities, announcing events, accompanying them to therapy,
or performing some activity as a virtual caregiver. For all this, the robot needs to perceive as much
information as possible from the environment and the people in it. This task is not simple, and it
is necessary for a complete system that connects the physical world (i.e., the robot’s perception
system and the environment) with a cyber world that allows, from specific models and rules, to
make decisions about the actions that the robot will perform. These Cyber-Physical Systems (CPS)
extend the robot’s capabilities to perform complex tasks. Fig 2 shows a diagram of a CPS system
in an assistive environment, where the robot is just another sensor with the ability to move and
interact with people and the environment itself. The basis of the CPS systems is an architecture
capable of combining all the input data to make the right decisions.

In the specific problem of robot navigation in an environment with people, and in particular, the
planning of socially accepted paths, a broad knowledge of the current state of the world facilitates
the robot’s ability to make appropriate decisions regarding the best trajectory during its navigation.
In fact, the path planning problem in human environments is an essential task for the future
generation of social robots. The way a robot navigates in real environments, such as an elderly care
center, strongly affects our perception of the robot’s intelligence (16). A path that explicitly takes
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Fig. 2: General view of a Cyber-Physical System for caregiving center.

into account people and interactions human-human and human-objects should not only consider, for
instance, minimizing the distance traveled to the target or the energy consumption, but also social
rules (e.g., keeping a comfortable distance to people or not disturbing them during interaction with
the objects in the environment).

This type of human-awareness navigation is known in the literature as social navigation, a topic
that started being extensively studied in the last decade. Since then, several navigation frameworks
based on different theories and methods have been proposed. As mentioned before, most of them
based on the concept of proxemics. In the recent study presented in (17), authors analyze the
impact of robot motion on humans according to social hierarchy and the socio-physical context,
concluding that the way in which navigates has an impact on the interaction that emerged between
them. Several works, such as those presented in (18; 19), and more recently (20), describe the main
approaches to the current state of the art. As a summary of these works, it is concluded that the
main capabilities that a social robot should exhibit while navigating in an environment with humans
are the ability to respect personal spaces for interaction and to avoid sudden and noisy movements
that cause distraction. We have taken into account these two social skills in our approach.

Human-aware navigation frameworks face a significant challenge, combining deliberative and
reactive behaviors during navigation: a social robot needs to be reactive to the dynamic environment
(moving people) and plan a socially accepted path. The latter, path planning, is one of the classic
problems of autonomous robot navigation. How the robot decides which is the best route from
origin to destination has been extensively studied in the literature (the readers can see recent
surveys in (21),(22)). The aim is to get a set of waypoints that the robot approaches one after the
other. This path should optimize the robot’s performance according to a global objective function
or cost function, e.g., the shortest path (or the quickest solution) without collisions. Most classic
path planning approaches in static environments use graph-based search methods, with a graph
representing states in the map. In this graph, a node is a point where the robot can stand without
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collisions, and an edge between two nodes means that the robot can navigate between the nodes
without causing a collision. The type of graph (e.g., square grids, arbitrary lattices, or expanding
random trees) influences the planning strategy. In our proposal, we use search algorithms on a grid
of the environment, which, in general, is computationally efficient and provides optimal paths (18).
Our proposal can be integrated with any navigation algorithm that uses a weighted graph, including
Dijkstra, A*, or D*, for instance. Dijkstra’s algorithm was conceived by E. W. Dijkstra in 1956 and
published in 1959 (13) to find, in a weighted graph, the shortest path from an origin vertex to the
rest of all vertices. The A* algorithm was published in 1968 by Peter Hart et al. (14). Its objective
is to find a minimum cost path between two nodes of a weighted graph. To do so, it maintains a
subgraph of paths originating from the starting node and expands these paths, trying to minimize a
function cost (shortest distance traveled, shortest time, etc.). The Dynamic A* search algorithm
(D*) was published in 1994 by Stentz (15). As well as A*, its objective is to find the lowest-cost
path between two nodes of a weighted graph. Concerning the previous ones, the particularity of the
D* algorithm is that the edge’s weight can change during the problem-solving process, replanning
the lowest-cost path online.

Furthermore, in dynamic scenarios, the robot’s motion plan needs to be frequently updated to
consider the changes in the environment. In these conditions, the path-planning problem is usually
divided into two stages: global path planning and local motion planning. From this point on, social
navigation algorithms extend the classic problem to environments with people by adding other
parameters and constraints to the global path; that is, they model social conventions by using
specific cost functions (18). Then, a local plan, updated at high frequency, is used to follow the
global path and deal with previously unknown dynamic obstacles. The most widely used solutions
for these short-term plans in the literature are the classic Dynamic Window Approach (DWA) (23),
Potential field (24), Elastic bands (25), Reciprocal Velocity Obstacles (RVO) (26) or Social forces
models (SFM) (27) approaches. In our proposal, we use an elastic band as a local path-planner,
which main advantage is that the forces of attraction and repulsion are combined, and the path is
always connected to the target. This structure is richer and facilitates replanning when there are
blockages and the possible introduction of additional constraints on the shape of the path or the
range of the robot control variables. In (28), the authors summarize the last path-planning strategies
in these dynamics environments, distinguishing between classical hierarchical planners (global and
local path-planners) and reinforcement learning-based ones. From these works, it is concluded that
there is no single best or worst strategy, and for all of them, there is still room for improvement. In
conclusion, human-aware path planning strategies are diverse, and the best strategy in aspects such
as comfort, safety, or naturalness is challenging to define, which are sometimes related to people’s
psychological and sociological factors.

Some authors propose models of social rules by using cost functions (29; 30). A typical solution
is to add social conventions or social constraints. For instance, Sisbot et al., (31) included social
constraints associated with safety, comfort, visibility, and hidden zones into their cost model. In (29),
the authors present a classical A* path planning method in conjunction with social conventions,
like to pass a person on the right side of a corridor. In (30), the authors use potential fields and
a proxemics model to define regions where the robot can navigate. Recently, some researchers
differentiates between human beings and objects to generate human-friendly paths that maintain
humans’ safety and comfort during the robot’s navigation (32). In (33), the authors propose a
generative navigation algorithm in an adversarial training framework that learns to generate a
robot’s path that is both optimized for achieving a goal and for complying with latent social
rules. A novel planning framework for social robot navigation is described in (34), where authors
combine implicit (robot motion) and explicit (visual/audio/haptic feedback) communication, besides
a predictive model of human navigation behavior. In all these works, the path planning algorithm
adds restrictions to the routes without considering changes over time, which could be its most
significant drawback.
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Most works in the robotics literature address robot social navigation in interactive environments
with people as a problem of social mapping, whose primary strategy is to define social interaction
spaces in which robot navigation is forbidden or penalized (8). An usual strategy in social navigation
is to map the space around a person at a higher cost than the free space. In this way, the use of this
space by the path planner is penalized. In the extreme case, a forbidden zone for navigation can be
defined as an obstacle, causing the planner to adjust its route not to cross it. In (8; 18; 19), authors
define areas in the people’s surroundings in which the robot’s navigation is adapted by using the
concept of proxemics. In the recent work presented in (35), authors use the Extended Social Force
Model (ESFM) to describe the interactive force with human and environment. This last concept is
not new, and other works use similar approaches (20). Other social navigation model is proposed in
(36), where they uses context extraction from ontology. Similar works use the term affordance or
activity spaces and prevent robots from navigating near them, creating regions where navigation is
also forbidden or penalized (37; 9). Recently, in (38), the concept of interaction spaces, and their
use to define social paths were introduced. However, all previous authors and works consider these
social maps as static, and there is no dependence over time. As a result, these social maps are
unrealistic and, in some situations, produce inconsistent robot behavior that might feel unnatural
and confusing.

In this respect, this time-dependent social mapping is poorly studied in the robotics literature.
The relationship between social conventions and time has been coined in other disciplines, such
as chronemics. This theory started in the field of social science, and it studies as time directly
influences human interactions (10). The concept of temporal planning has been introduced in some
works to provide changes in the path that consider the people’s movements. Most of the earlier work
is limited to collision-free trajectory planning. Kollmitz et al. (39), is among the few works found
in the state of the art of our field, the authors predict pedestrians’ movements using time-layered
occupancy grid maps. In the paper, the authors do not consider the time dependency as it will
be described in our proposal, but only to estimate those spaces where people can be in the future
according to their velocities and current poses. Recently, in (40), (41), the authors present and
extend, respectively, SocioSense, a real-time algorithm for human-aware navigation that computes
people’s personality or time-varying behavior and dynamically models the proxemics. The authors
include this information in their temporal planning algorithm; however, the concept applies only
to people in motion, whereas in our paper, the more general concept applies to people, objects,
and the specific context. Thus, the proposed algorithm differs in terms of performance because
it avoids directly navigating through spaces where many people concur, and that would cause a
disruptive effect. As this first planning is deliberative, the robot’s path is optimal and minimizes
sudden movements in the robot to adjust to people’s movements. In the paper (42), the author
defines a new general concept, the behavioral map, which comprises the monitoring of the human’s
presence in specific places during the time and label these spaces related to human action. The
author does not use this definition for any specific scenario but points out that it can be used to
plan a path that avoids people.

Consequently, our proposal has been inspired by some of the concepts presented, such as
proxemics, chronemics or affordance spaces. As the main novelty, it is defined the time-dependent
social mapping, taking into account the activities agenda of an elderly care center and how it
influences in the social interaction spaces. The proposal uses the classical Dijkstra’s algorithm,
where the weights of the nodes are modified to take into account the social map of the environment
and its dependence over time. Our approach is agnostic to any other planning strategies that uses a
graph for representing states in the map (collisions) and graph-based search methods.
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3 Overview of the social navigation framework

Robotic social navigation in care facilities, where the center’s professionals schedule all activities,
requires a reformulation of the classic social navigation algorithm, as well as the use of an evolved
hardware and software architecture. This work uses a shared representation of the environment
called Deep State Representation (DSR) and the CORTEX cognitive architecture, both described
in (11). DSR is a multi-labeled graph that stores the environment’s information: rooms, humans,
objects, and the robot, among others. In this graph, nodes are the elements (e.g., ”room”, ”table”),
and arcs are the relationship between them (e.g., ”in”, ”connected”) (11). Software agents interact
with this representation of the world to include new nodes (e.g., a new person comes in a room, or
a new object is detected) or update relationships (e.g., two people start an interaction or the robot
moves to another room). Fig. 3 illustrates a simplified example of the DSR graph for an elderly care
center.

CORTEX cognitive architecture must be complemented by a perception system that monitors
people and objects in the environment. The navigation framework presented in this article, although
not strictly necessary, requires an understanding of what is happening in the care facility far beyond
the robot’s perception system. In other words, in this proposal, the smart-environment will solve
the problem of this detection and tracking of people’s position, the detection of changes in the
objects’ position, and the interactions between people and objects, using an RGBD cameras array
strategically distributed throughout the caregiving center.

Fig. 3: An example of the Deep State Representation in an elderly care center.

The overview of the proposal is described in Fig. 4. The social path is solved using a classical
Dijkstra algorithm that uses a free-space graph, G(N,E). In this free-space graph, each node’s
weight varies according to the time-dependent social map generated by the cognitive architecture.
The planned route is updated as it is traveled by using the elastic band path optimization algorithm
described in (43), adapting it to unexpected events, such as dynamic obstacles. The time-dependent
social map is built according to the information provided by the Deep State Representation, DSR,
which has been previously updated from two different agents: the human observer agent and the
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Fig. 4: Proposed system architecture.

object recognition agent. The first one, the human observer agent, is in charge of detecting and
tracking people in the scene. The object recognition agent is responsible for detecting objects
and monitoring their pose in the environment. Finally, the time dependence of this social map is
provided, among others, by the center’s professionals.

All agents in the architecture communicate with the DSR through the Executive agent. This
agent is responsible for planning feasible plans to achieve the current mission, managing the changes
made to the DSR by the agents as a result of their interaction with the world, and monitoring
the execution of the plan. The Executive agent uses a visual planning domain definition language
named Active Graph Grammar Language (AGGL), and an AGGL-specific planner (46) based on
the Planning Domain Definition Language (PDDL). The agents involved collaborate by executing
the actions of the stages of the plan. Each time a plan step is completed, a change in the model is
included. The Executive agent uses this current state of the model, the domain, the target, and
the previous plan to update the current plan accordingly. The following sections delve into the
navigation framework devised in this article.

4 Time-dependent social interaction spaces

Building a coherent social map of the robot’s surroundings is one of the main targets of the proposed
navigation framework. In real-life scenarios, such as caregiving centers, people interact with each
other and objects in the environment. The first step of the presented framework implies the definition
of the social interaction spaces associated with people and objects and their dependence over time.

4.1 Social mapping: people in the environment
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Considering S ⊂ R2 the space of the global map, let HN = {h1, h2...hN} be a set of N humans
detected by the human observer agent, where hi = (x, y, θ)i is the pose of the i-th human in the
environment, being (xi yi)

T ∈ S and θi ∈ [0, 2π)1. To model the interaction space of each person hi
an asymmetric 2-D Gaussian curve gi(x, y) is used, as described in (37). The Asymmetric Gaussian
function is composed of two halves of 2D Gaussian functions: an elliptical function in one direction,
and a different ellipse in the opposite direction. This function associates the distance between a
point p = (x y)T ∈ S and the person’s position with a real value gi ∈ [0, 1] as:

ghi
(x, y) = exp−(γ1(x−xi)2+γ2(x−xi)(y−yi)+γ3(y−yi)2) (1)

where the coefficients γ1, γ2 and γ3 are associated to the rotation of the function θi. Let σs be the
variance to the sides (θi ± π/2), and let σ the variance along the person heading σh (θi), or the
variance to the rear σr (θi ± π), these coefficients γi are given by:

γ1(θi) =
cos(θi)

2

2σ2
+
sin(θi)

2

2σ2
s

(2)

γ2(θi) =
sin(2θi)

4σ2
− sin(2θi)

4σ2
s

(3)

γ3(θi) =
sin(θi)

2

2σ2
+
cos(θi)

2

2σ2
s

(4)

One aspect of the proxemics theory is the idea of interaction spaces are greater in front of people,
and least behind. Besides, this personal space tends to have the same basic shape across cultures
(29). Thus, the values of these variances are fixed to σh = 2, σr = 1 and σs = 4/3. Fig. 5 depicts
various views of one such Asymmetric Gaussian cost function. The function shown is centered at
(-2.5, 0), has a rotation of θi = 0, and has these values of variances. The maximum cost is 1.0 at
the center of the function.

(a) (b)

Fig. 5: Two different views of an Asymmetric Gaussian function centered at (-2.5, 0), rotated by θ
= 0, and having variances σh =2, σs = 4/3, and σr = 1.0; a) contour map; and b) surface map.

Fig. 6a shows a scene of a simulated caregiving center. There are two different rooms, a toilet
and a corridor, and four people inside. Two of the people interact with each other, and the other
two are alone in their respective rooms. Two people, labeled as 1 and 3 and their personal spaces
modeled by asymmetric Gaussians, are drawn in Fig. 6b.

1 The actual detection of people is out of the scope of the paper. In the experiments carried out it was performed
by the CORTEX architecture and a RGBD camera network.
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(a) (b)

Fig. 6: a) People in a simulated caregiving center; b) asymmetric Gaussian associated with person 1
and 3, and clustering of the two people labeled as 2 in Fig. 6a.

The algorithm clusters the humans detected in the environment according to their distances by
performing a Gaussian Mixture (37). Let ghi

(h) be the personal space function for each individual i
in the set of all HN of all people in S. The global density space function Gd(h) is defined as:

Gd(x, y) =
∑
i∈HN

ghi
(x, y). (5)

In order to group individuals into clusters, the method chooses the Ωd and Ωθ parameters as
the smallest Euclidean distance and the smallest difference of angles between two people hi(x,y, θ),
hj(x,y, θ) ∈ HN such that those two are neighbors. These values are given by the insights of
proxemics (the assessment of these parameters was described in (37)). If hi(x,y) and hj(x,y) are
neighbors, then ‖hi(x,y),hj(x,y)‖ ≤ Ωd and ‖hi(θ),hj(θ)‖ ≤ Ωθ, and the density contribution δ
between them is:

δ = ghi
(hj). (6)

Since ghi
(hi) = 1 for each hi ∈ P , then if hi has k neighbours then G(hi) ≥ 1 + kδ. Hence,

the method can adjust a density threshold φ in order to group individuals who have at least k
neighbours. φ is given by:

φ = 1 + kδ (7)

and it can compare the value of the global function for each point in S and determine whether that
point belongs to the personal space of a group of individuals. The set of such points is denoted by
J and given by the expression:

J = {h ∈ S | Gd(p) ≥ φ} (8)

Finally, the contours of these regions are defined by a set of k polygonal chain (i.e., polyline) Lk =
{l1, ..., lk}, where k is the number of regions detected by the algorithm. The curve li is described as
li= {a1, ..., am}, being ai = (x, y)i the vertices of the curve, which are located in the contour of the
region Ji.

According to (19), it is possible to classify the space around a person into four zones, depending
on the degree of social interaction: public, social, personal, and intimate. Each human hi present in
the environment will have three associated spaces: the intimate space, delimited by the polyline
Lk

intimate; the personal space, delimited by Lk
personal; and the social space, delimited by Lk

social,
each of them being larger than the previous one, as it was introduced in (19). The public region
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will be the remaining free space. These contours, which are created by choosing different values of
the density threshold φ, can be seen in Fig. 6: in red is shown the intimate space, in purple the
personal space, and in blue the social space.

However, these social spaces do not vary according to time. Consequently, our approach proposes
adding a simplified version of the concept of chronemics in the social interaction spaces defined
above. Interactions between people and people with objects follow socially accepted conventions (47).
For example, interruptions are usually more annoying at the beginning or in the middle of the
action than when it is nearing completion.

4.2 Social mapping: objects in the environment

In caregiving centers are common to perform physical or cognitive therapies where people - elderly
or professional - interact with objects. Robots should be able to detect these situations before
planning their path. As mentioned, the literature defines the concept of Affordance spaces to refers
to areas where humans usually perform particular activities (9). These spaces are related to the
way people interact with the object, and they are different for each type of object. These spaces
are called Activity spaces when people are interacting with them, and they are, in general, fixed
regions that have been mapped a priori as forbidden or free spaces for robot navigation. As before,
these spaces do not vary according to time. In order to achieve greater flexibility in path planning
and a higher degree of socially acceptable navigation, in our approach, this interaction space is
time-dependent.

Therefore, let OM = {o1, ..., oM} be the set of M objects with which humans interact in the
environment. Each object ok ∈ OM stores as attributes its pose pok = (x, y, θ)k, being (xi, yi)

T ∈ S
and θi ∈ [0, 2π), and its interaction space iok . This interaction space is composed of the affordance
space that describes the human-object interaction Aok and the time-dependence Rok(t). Therefore:

ok = (pok , iok) (9)

where iok = (Rok(t), Aok).
Different objects in the environments have different interaction spaces iok . For instance, when

using a table for therapies, a smaller area is needed compared to when watching television because
this can be done from a farther distance. These areas are modeled by using the affordance spaces Aok
for each object ok. Besides, these interaction spaces include the chronemics and the time-dependence
according to the Rok(t) function. Thus, depending on the object’s interaction space and the way that
people interact with, iok is modeled using one or another model. In this paper, these spaces have
been modeled and classified as: i) isosceles trapezoidal shapes, at (e.g., TV or poster); ii) rectangle
shapes ir (e.g., tables, beds or stretcher); and iii) circular shapes ic (e.g., circular tables). at, ar,
and ac define the occupied areas that describe the affordance spaces for trapezoidal, rectangular,
and circular shapes, respectively. Fig. 7 illustrates the interaction space of each type of object.

– Trapezoidal shapes: Object like TVs are common in caregiving centers. Today, with the incor-
poration of therapies based on Serious Games (48), their presence is even more frequent. This
type of objects are modeled as an isosceles trapezoid with height t′h and widths (t′w1, t′w2), as
described in (37).

at = t′h ·
t′w1 + t′w2

2
(10)

– Rectangle shapes: Objects like tables, beds, or stretchers are rectangular objects typically used
in caregiving centers. These objects are modeled as a rectangle with height r′h and width r′w.

ar = r′h · r′w (11)
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– Circular shapes: Objects like circular tables are also common in caregiving centers. These objects
are modeled as a circle with center in pok and radius c′r.

ac = π · c′r
2

(12)

Fig. 7: Object interaction space is modeled by: isosceles trapezoid (left); rectangle (middle); and
circular shapes (right)

In this paper, Rok(t) is a mathematical function which ranges from Rmin ≤ Rok(t) ≤ Rmax,
where Rmin and Rmax mean that the object does not have any activity scheduled at that time t
or it has an activity scheduled at this time, respectively. When the start time of the activity is
approaching, the value of Rok(t) increases. On the contrary, when the activity finishes, the value of
Rok(t) decreases. In summary, Rok(t) could be understood as a countdown for the remaining time
until the start of the activity and a count for the elapsed time after the end of the activity. Fig. 8
shows an example of Rok(t) for a generic object.

Finally, a polyline for each object Ltok is defined. The set Lto = {Lto1 , ..., L
t
oM } describes the set

of polylines used by the navigation framework at an instant time t.

Fig. 8: R(t) function of time-dependent social interaction space for a generic object.

5 Socially-acceptable navigation framework

This section describes the social navigation framework proposed. First, the social map is integrated
into a social path planner, which is executed globally at the beginning of the trajectory, and every
time a significant change in the environment is detected. In this global path-planner, the robot’s
environment is represented by a uniform graph composed of obstacle-free nodes with a fixed finite
traversal cost, and non-free nodes, which have an infinite one. The proposal modifies the costs
according to the social map, and the optimal path uses the Dijkstra’s algorithm. Finally, a local
planner based on elastic bands adjusts the path according to the readings of the robot’s sensors.
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5.1 Graph-based grid mapping

Space is represented by a graph G(N,E) of n nodes, regularly distributed in the environment. Each
node ni has two parameters: availability, dn, and cost, cn. The availability of a node is a Boolean
variable whose value is 1 if the space is free, 0 otherwise. ci, indicates the traversal cost of a node.
High values of ci indicate that the robot should avoid this path, and low values of ci indicate that
the robot should use this path. Initially, all nodes have the same cost 1. Fig. 9a shows an original
free-space graph in which all nodes have the same cost and availability.

The classical Dijkstra algorithm is employed for determining the shortest path between an initial
position and a target to which the robot must travel. The algorithm calculates the cost from the
node origin to the target node, taking into account the traversed nodes’ cost. The cost of a path is
the sum of the cost of the nodes that compose it and the path with the lowest cost will be selected.

(a) (b)

Fig. 9: Graph-based grid mapping: a) initial free-space graph; and b) final free-space graph, after
including the social interaction spaces.

5.2 Social graph-based grid mapping

The free space graph is modified to include social interaction spaces. Firstly, those associated with
the interaction between one person and another -or groups of people-. Secondly, those associated
with the interaction between people and objects.

5.2.1 Personal space mapping

Being A the matrix formed by the availability of each node of the free space graph and C the
matrix formed by the costs and considering the set of polygonal curves defined bellow, Lk

intimate,
Lk

personal, and Lk
social, this paper presents the modification of the cost and availability of the

nodes of the graph according to these interaction spaces.

Firstly, considering only the intimate space around the person hi, for each polyline lintimatei is
defined a polygon P intimatei formed by the points of the polyline. The availability dhi

of all the
nodes Ni ∈ N contained in the space formed by P intimatei is set to occupied, dhi

= occupied. This
means that the robot will not be able to invade this space, as it would disturb the person. For
personal and social spaces, the nodes’ availability is not modified, but its cost will be changed.
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Secondly, considering the personal space around the human hi, for each polyline lpersonali a

polygon P personali has been defined. The cost chi
of all the nodes ni ∈ N , contained in the space

formed by P personali will be modified and set to chi
= 4.0. In the same manner, for the social space,

a polygon P sociali is defined for each polyline lpersonali . All the nodes Ni ∈ N contained in the
space formed by P sociali will have cost chi

= 2.0. The public space will be the rest of the graph
whose costs remain unchanged. Fig. 9b show the final free-space graph, where the costs of nodes are
modified according to the social spaces of interaction.

Intimate areas are forbidden for navigation. Personal and social spaces are available, but their
costs are higher, being personal spaces more expensive than social spaces, starting from the free-
space, the cost doubles when the robot needs to use a more personal space in its navigation. In
this way, when the robot plans the shortest path, it will move away, reasonably, from the person,
exhibiting better human-aware navigation. One of the main advantages of not considering the social
and personal spaces occupied is that, if the robot does not have enough space for navigating, for
example in a corridor, it will not be blocked, but will navigate in the social space, although the cost
of the path will be higher. If the robot has no other alternative, it will cross the personal space, but
it will never cross the intimate space.

5.2.2 Object space mapping

This same technique has been used for the objects. Firstly, for each object ok is defined a polygon
Pok , that represents the availability, dok , of all the nodes ni ∈ Aok contained in the space formed
by the polygon Pok . The availability of the nodes of each object, dok in the matrix Aok , is set to
occupied, dok = occupied, while availability of the rest of nodes is not modified.

Secondly, let Lto = {Ato1 , ..., AtoM } be the set of polylines that describe the social interaction
space for each object. For each Atok is defined a polygon P tok formed by the points of the polyline,
which maps these points with the costs of the nodes in G(N,E). Accordingly, the nodes’ cost in
the matrix C are set to ctok = R(t) in the free-space graph. These values are associated with the
scheduled activities for each object.

Fig. 8 shows the evolution in the cost of going through a node in function of time. The value
starts at ctok = 1.5, which means that there is no activity scheduled for that object or that remaining
more than 45 minutes to its start. Likewise, the cost ends at ctok = 3.5, which means that an activity
is being performed at that time. Finally, after the end of the activity, the cost decreases in the same
way that it increased until reaching ctok = 1.5. R(t) function can be easily adjusted according to the
caregiving center’s specific needs.

5.3 Socially acceptable robot navigation

Once the time-dependent social map of the world has been defined, the next step is the planning of
the socially accepted path and the final navigation to the target. The framework defines this step as
a three-level hierarchy. These three levels are depicted in Fig. 10, and are defined as:

– Path planning algorithm: The time-dependent social map is used to generate global trajectories
to specified targets.

– Elastic bands: The planned route is deformed in real time to handle local changes in the
environment detected by range sensors. An elastic band is defined as a deformable collision-free
path (25). The basic algorithm defines imaginary forces at each point along the robot’s path.
These imaginary forces are divided into an internal contraction force (fc) and an external
repulsion force (fr). The first simulates the tension in a stretched elastic band and removes any
slack in the path. The second counteracts the contraction force and gives the robot clearance
around the obstacles. The two forces deform the elastic band until reaching the equilibrium. To
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illustrate the basic behavior of elastic bands, consider a robot and three consecutive points on
the planned path pi−1, pi, pi+1 (see Fig. 11). These three points define the contraction force.
The readings of the range sensors define the repulsive force. The combination of the two forces
modifies the final position of the path point pt+1

i .
– Control: A feedback control law is used to move the differential robot along the elastic band.

Fig. 10: A three level hierarchy for the proposed framework.

Fig. 11: The basic elastic band algorithm defines imaginary contraction and repulsion forces, fc, fr,
respectively. These forces modify the band until equilibrium is reached.

The core data structure of the path is a list of 2D points or bubbles that behave as an elastic
band under various internal and external forces and processes (25). The path is defined as the
ordered set, P = pi : p ∈ R2xN, i ∈ 0..N , with two real coordinates in a global reference system
maintained by the robot, and an integer one for the bubble’s radius. Each radius is computed as
the minimum distance to the surrounding objects in the environment, using range sensors. The
function ρ(p) that computes this radius is defined as R2 × R2 →

{
R+ ∪ 0

}
and is implemented as
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a search iterating over the laser array and the list of visible points. The set of forces and processes
that affect the path are:

– The Path planning algorithm creates a new path given the robot’s position, the target, and the
time-dependent social map. The creation of the path initiates the internal dynamics that will
eventually take the robot to the target.

– Once an initial path is available, the size of the set P - is continously adapted by adding and
deleting elements. The goal is to keep them equally spaced along the band’s length even it is
streched or shrinked. If two points are separated more than half the length of the robot, a new
one is inserted. Conversely, if two points are closer than half of the robot, they are combined
into a single point on the trajectory.

– The next process exposes the band’s elements to an internal force, fc, that opposes to the local
curvature. The effect of this force is to tighten the band, making it as straight as possible. The
force is computed from nearby points as:

fc = kc(
pi−1 − pi
‖pi−1 − pi‖

+
pi+1 − pi
‖pi+1 − pi‖

) (13)

where pi is the position of step i in the path. The force only vanishes if the three points are
aligned. These internal forces are illustrated in green color in Fig. 12.

– The last process exposes the band to a repulsion force, fr, which pushes the robot’s trajectory
from the obstacles. The value of this fr depends on D(x, y), that is defined as the minimum
distance from the position of point pi to the obstacles in the environment. D(x, y) is measured
by the robots’ range sensors. For each point in the path, pi, the direction of maximum variation
of D(x, y) with respect to points coordinates (x, y) of the obstacles is computed with a discrete
Jacobian:

∂D

∂p
=

1

2δ

[
D(p− δx)−D(p+ δx)
D(p− δy)−D(p+ δy)

]
(14)

where D is the minimum distance function defined above, p is the point in the path and x and y
are the point’s coordinates. δx, y are discrete displacements in the point’s position. The Jacobian
is multiplied by the difference between a maximum distance threshold D0 and the current value
of D(x, y):

fr =

{
kr(D0 −D)∂D∂p p < D0

0 p ≥ D0

}
(15)

where kr is a global repulsion gain and represents the maximum distance up to which the force
is applied.
The effect of this force is to adapt the original path to the state of the real world, correcting
planning errors caused by an imprecise world model, by a miss-localization of the robot or to
the appearing of unforeseen obstacles like dynamic objects. The force acts on the band’s points
by repealing them with a magnitude inversely proportional to the distance that separates them.
This action effectively relocates the path at a safe distance from the obstacles, increasing the
robot’s clearance, and providing the reactive component necessary for real time control.
Finally, each point, pi , in the path is modified according to the sum of the repulsion force, fr,
and the contraction force, fc.

pt+1
i = pti + fr + fc (16)

These repulsion forces are illustrated in thin blue arrows in Fig. 12. Very quickly, the whole path
evolves towards an equilibrium point where all forces cancel out (25; 43).
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Fig. 12: The final social path is shown as the continuous blue line (4). Besides, steps provided by
path planner (red circles), contraction forces (green arrow), and repulsive forces (blue arrow) are
drawn.

5.4 Computation of optimal force gains

The elastic band algorithm provides smooth integration between global path planning and local
path tracking. However, there are two free parameters that have to be manually tuned in order to
achieve a good real-time response. These parameters are the gains applied to the forces that act on
the band:

– kc: the global constraint gain, that is related with the contraction force (see Eq. 13).
– kf : the global repulsion gain, that is related with the repulsion force (Eq. 15).

An incorrect choice of these values and the path will nor adapt quickly enough to new obstacles,
or it will become unstable under certain configurations of equally proximal obstacles. One way to
find good values for a specific environment is to define a function over the robot’s trajectories that
provides higher scalar values for those well executed. Following this idea, a cost function is defined
over the space of trajectories T as the linear combination of four penalty functions:

G = aH(ti) + bD(ti) + cQ(ti) + dP (ti) (17)

where the coefficients a, b, c, d weigh the relative contribution of each term. H is sum of heading
changes along the path,

H =

∫ T

0

dθdt (18)

D is the total distance travelled by the robot,

D =

∫ T

0

√
(
dx

dt
) + (

dy

dt
)dt (19)
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Q is the total time used to complete the path, and P is the mean distance between the robot
and people nearby along the path.

H =
1

T

T∑
i=0

d∗(pi, P ), with d∗i = mink(d(pi, P
i
k)) (20)

where {P i} is the set of people visible form position pi
To minimize G over a sample of trajectories we use combination of direct search procedure and

stochastic gradient procedure. One of the gains is fixed and the other one is sampled in a predefined
range. For each value of the gain, the robot is sent to 20 different places and the resulting path
is recorded. The functions H,D,Q and P are computed for each path ti and combined into Gi.
The path t∗ that minimizes G is found along with its gain value. In the next iteration, this gain is
set to the value corresponding to the minimum and the other gain is sampled along with a new
set of paths. The procedure is repeated until no further improvement is found. Fig. 13 shows the
different robot’s paths, maintaining a fixed value of gain and varying the other. The left image
shows different trajectories varying the kc value and fixing kf ). The conclusion drawn from the
experiments is that the optimized values for kc and kf are 120 and 60, respectively.

Fig. 13: left: robot’s trajectories varying the kc values during different tests; center: robot’s paths
where kf values changes and the rest of parameters are constant; and right: simulated environment,
where the initial and end position in the trajectory are labeled.

5.5 Planning of robot’s actions during navigation

In the proposed framework, planning is performed with the symbolic information in the Deep State
Representation (DSR), using the nodes of the representation as symbols and the edges of the graph
as predicates (44). Fig. 14 illustrates an example of the shared representation associated to Fig. 6(a).
As shown in Fig. 14, CORTEX uses a lot of different types of symbols and edges. However, only a
set of symbols are used in the planning domain of the proposed framework: human, robot, objects
and room. Similarly, the set of edges are limited in the planning domain.

This paper is focused on those cases where only a robot is located in the model, but where several
people, objects, and rooms are possible. The planning domain in the navigation framework defines
all the rules needed to be socially accepted, among others: to navigate without disturbing people,
approach a person or group of people, get their attention, and initiate interaction, for instance.
The planning rules are described through AGGL (44), and thus, they are defined as pattern pairs,
in the same way as string grammar rules: each rule states that the pattern on the left-hand side
can be replaced with the pattern on the right-hand side. For example, the changeRoom action in
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Fig. 14: Deep State Representation of the world shown in Fig. 6(a).

Fig. 15: Examples of rules defined in the navigation domain: changeRoom, where the robot navigate
to other room in the environment, and takeTheAttention, where the robot navigates until being
facing people.

Fig. 15 shows to the robot in a room in the left-hand side (initial state) and, on the right-hand side,
after applying the rule, the robot should be in another room. In Fig. 15, the blue color indicates
the nodes and edges on the left-hand side, in yellow, the elements that will be on the right-hand
side, and in green the elements that do not change in the rule. Any changes in the care center’s
schedule are communicated through the DSR. Thus, the information in the other agents is updated
in real-time, including the new actions described in the grammar. Any changes in the care center’s
schedule are communicated through the DSR. Thus, the information in the other agents is updated
in real-time, including the new actions described in the grammar. This architecture facilitates the
planning of specific actions in the robot. For example, if the robot wants to approach a person,
such as the works described in (45) it generates a set of simple actions that the robot executes
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sequentially: select the target person, estimate his or her pose, plan a trajectory that ends facing
the person, and initiate the movement. The proposed navigation framework is integrated with this
plan thanks to the DSR information (12).

6 Experimental Results

6.1 Validation of the Social navigation framework

To carry out the validation of the social navigation framework proposed in this article, simulated
environments are used to ensure equal conditions in the study, thus isolating possible problems that
may arise in real scenarios, such accuracy errors in locating objects and persons, and therefore, are
exogenous to the test itself. The proposed time-based navigation framework applies to any semi-
organized social environment whenever there is a schedule of activities. The simulated environment
consists of a caregiving center. The evaluation requires the participation of the center’s staff, who
must schedule the activities in the center’s agenda. The results are compared with a navigation
algorithm without social behavior, evaluating metrics especially designed to validate the acceptance
of the path performed by the robot.

For the reader’s convenience, Fig. 16 shows the representation described in this paper for building
time-dependent social interaction spaces. In Fig. 16a, a physical therapy room with three objects is
shown (a TV, a circular table, and a stretcher). The center’s professionals have set the activities
schedule. In Fig. 16b shows a situation where there are no activities scheduled for any of the objects
in the room. For each object, the shape of its social interaction space is observed. The yellow color
serves to visually indicate that the cost of the node is the minimum. Fig. 16c and Fig. 16d show two
other situations and how the time-dependent social interaction spaces evolve. As appreciated, the
nodes’ costs are represented by different colors for each object according to the activities agenda. In
red to indicate that an activity is currently being executed. In orange to indicate that an activity
has just been completed.

The social navigation framework has been developed in C++. The experiments have been
performed in a PC with an Intel Core i5 processor with 4Gb of DDR3 RAM and Ubuntu GNU/Linux
18.10. Two different simulated scenarios have been designed. Both are composed of different
elements, such as corridors, toilets, and physical therapy and occupational therapy rooms. There
are professionals and older adults who carry out programmed activities. For people and objects’
tracking, a network of RGBD cameras with an almost complete visual field of the scenarios must be
deployed. Fig. 17 shows the two scenarios used in the simulations, as well as the RGBD cameras
location. Fig. 18 shows images acquired by using the camera network deployed in the first simulated
scenario at different instants of time. As the figure shows, there is minimal overlap between cameras,
which is needed to monitor people and the robot during the activities. It is interesting to note that
the simulation only refers to the scenario, everything else, image capture, path planning, and path
optimization, laser data processing, etc. is done by the CORTEX architecture as if it were a real
scenario.

The first experiment is shown in Fig. 19. This scenario (Fig. 17a) is composed of three rooms,
objects, and people, where the activities schedules are modified. The first experiment consists of
two tests. Firstly, the scheduled center activities are: (i) a therapy scheduled on the table, with an
older person (senior1) performing the therapy; (ii) no other therapy has been scheduled. Secondly,
the situation changes slightly. In this case, there are therapies programmed on the table (senior1)
and on the TV (senior2). In Fig. 19a and Fig. 19b the social paths executed by the robot for each
test are drawn. These paths avoid crossing close to the people in the room, getting as far away from
them as possible, always minimizing the distances traveled, and considering the time-dependent
social interaction spaces.

In order to assess the validity of the proposed navigation approach, the methodology has been
evaluated accordingly to the following metrics: (i) average minimum distance to a human during
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(a) (b)

(c) (d)

Fig. 16: First test: a) simulated physical therapy room with three objects inside. Time-dependent
social interaction spaces and its costs in the graph: b) yellow, no activities scheduled; c) red, activities
are being performed; and d) orange, activities have just finished.

(a) (b)

Fig. 17: Two different simulated scenarios. Both of them represent the typical room layout of real
caregiving centers.

navigation, dmin; (ii) distance traveled, dt; (iii) navigation time, τ ; (iv) cumulative heading changes,
CHC; (v) personal space intrusions, Ψ ; and (vi) objects’ spaces intrusions. These metrics have
already been established by the scientific community (see (49; 50)).
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Fig. 18: An example of six RGB images acquired by the caregiving center’s sensor network in different
moments. The cameras are tagged to locate them in the first scenario used for the experiments.
(See Fig. 17a)

The experiment results are shown in Table 1, where metrics for the performed path by a classical
Dijkstra’s algorithm without social behavior is also detailed. In Table 1, the performed paths by the
proposed social navigation approach for both tests are identified as Path 1 and Path 2, respectively.
First of all, as it is evident, the robot’s performed path without social behavior travels a shorter
distance in a shorter time. The time employee by the robot to reach its target increases compared
to a classic path-planner without social behavior, but in return, it does not disturb people while
they are performing their therapy.

However, and as Table 1 shown, for the non-social behavior algorithm, the distance to dsenior1min

(the senior that is opposite the TV) is minimal, which can bother the caregiving center’s users.
This same situation can also be observed with the value of Ψ(Intimate), which indicates that the
robot invades this usually forbidden space. In Path 1, the robot travels a shorter distance in less
time, maintaining its social behavior without invading personal spaces, as shown in the data in the
corresponding column. Also, in Path 1, the robot uses the TV’s time-dependent social interaction
spaces in its trajectory since it is not in use. In the Path 2, the robot also has a socially accepted
behavior, adapting its trajectory to the center’s activities, avoiding crossing the space associated
with the TV. Consequently, it is guaranteed that the robot does not disturb during the therapies2.

The second scenario was presented in Fig 17b. In this second experiment, the robot must navigate
from its initial position to the occupational therapy room, where a user is performing an activity.
During the robot’s navigation, the activities programmed in other objects in the environment
change according to the agenda, and the robot must re-planning its social path. Fig. 20a shows the
robot’s path at the time instant labeled as 1 in Fig. 20c. As shown in Fig. 20a, the planned path
crosses near the table and the senior. At the instant of time labeled as 2, the table’s time-dependent
social interaction space changes, increasing the cost of the first planned path. Consequently, the
robot creates a better social path, and this trajectory is shown in Fig. 20b. Table 2 describes the
main results for this experiment, comparing the path finally carried out (Path2) with a classical
navigation approach. Also, the results when the robot crosses the occupational therapy room during
the therapy are shown (Path 1). From the results of this tables, it can be concluded that the

2 First experiment video: https://youtu.be/j-Lw5taqqDc

https://youtu.be/j-Lw5taqqDc
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(a) (b)

(c)

Fig. 19: First experiment. Scenario Fig. 17a: a) path planned at the time labeled as 1. There is an
activity on the table; b) path planned at the time labeled as 2. There are two activities, one on the
table and another on the TV; and c) center’s activities agenda.

Table 1: Navigation results for the experiment shown in Fig. 19

Path 1 Path 2 Non social behavior
Parameter Value Value Value

dt (m) 14.03 17.40 12.81
τ (s) 101.79 124.24 97.21
CHC 0.47 1.75 2.12

d
senior1
min (m) 1.39 1.89 0.51

d
senior2
min (m) 2.14 1.13 2.11

Ψ (Intimate) (%) 0.0 0.0 4.21
Ψ (Personal)(%) 0.0 11.0 0.0
Ψ (Social)(%) 0.0 8 12.44
Ψ (Public)(%) 100.0 81.0 83.35

Ψ (Objects) (%) 34.98 1.64 4.62

navigation framework described in this article improves the expected navigation results according
to the exposed metrics3.

3 Second experiment video: https://youtu.be/v6rG8uWhwKw

https://youtu.be/v6rG8uWhwKw
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(a) (b)

(c)

Fig. 20: Second experiment. Scenario Fig. 17b: a) path planned at the time labeled as 1; b) path
planned at the time labeled as 2; and c) center’s activities agenda.

Table 2: Navigation results for the experiment shown in Fig. 20

Path 1 Path 2 Non social behavior
Parameter Value Value Value

dt (m) 11.30 16.28 10.92
τ (s) 52.5 63.1 51.1
CHC 9.28 3.5 12.12

dtherapist
min (m) 3.16 5.17 3.11

d
senior1
min (m) 2.70 2.88 2.65

d
senior2
min (m) 1.82 3.41 1.42

d
senior3
min (m) 1.58 2.10 1.65

Ψ (Intimate) (%) 0.0 0.0 0.0
Ψ (Personal)(%) 0.0 0.0 0.0
Ψ (Social)(%) 16.47 0.0 18.03
Ψ (Public)(%) 83.53 100.0 81.97

Ψ Objects (%) 69.85 0 73.22
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Question avg. (σ)

The robot navigates in a similar way to the human 3.86 (0.57)
The robot correctly approaches its target without interfering with the therapy 4.68 (0.48)
Did you feel uncomfortable during the robot’s navigation? 4.57 (0.52)
The robot shows socially accepted behavior 4.37 (0.52)

Table 3: 10 participants used a Liker scale-based questionnaire to evaluate the robot’s navigation
during the real tests.

6.2 Human-aware navigation in real scenarios

For testing in real scenarios, we have used the semi-humanoid robot Viriato. It is an omnidirectional
robot, approximately 1.6 m tall, and it has several onboard cameras for navigation (SLAM) and
interaction with objects and people. It also has a laser sensor for object detection during motion. Fig.
21 shows the laboratory environment used for the tests. The assistance environment consists of a 65
m2 apartment with two rooms, one of them set up as a kitchen-living room for the experiments and
another area, isolated, for the researchers. In the experiment area, there are three RGBD cameras
combined with the NVIDIA Jetson Nano development kit that facilitate the detection and tracking
of the pose of people in the environment. The CORTEX architecture for these tests includes all the
agents presented in the article and are distributed in different computers with Linux Ubuntu 20.04
distribution and with the RoboComp framework installed (51).

In the experiment area, we use a TV and a table, which are the objects for which time-dependent
social interaction spaces are defined. This information is configured offline by the center’s staff,
who also participate in the event. We recruited 10 participants, of which 8 are non-professional
roboticists, and asked them to assume two different situations: i) the therapist interacts with
the TV; and ii) the therapy is performed sitting on the table, always chosen by the person in a
random position. Each experiment involves one subject and one therapist. We make no assumptions
about the accuracy with which the subjects performed the therapy. The robot moved around the
kitchen-living room, always taking into account the agenda. Next, participants completed a Likert
scale-based questionnaire whose main outcomes are shown in Table 3. In summary, participants
reported that they felt comfortable with the robot in the scene. Therapists also responded that the
robot was not disturbing during therapy sessions. A sample of these experiments are described in
Fig. 22 and Fig. 23. Fig. 22a shows the social mapping in this first test. First, we can observe the
Gaussian curves associated with the personal spaces of the participants, labeled as 1 and 2 in Figs.
22a and 23a. In this first test, the therapy takes place at the table; that is why the time-dependent
social interaction spaces of the TV are at a light yellow color (lower cost). The planned path is
shown in Fig. 22b, where the elastic band is also included. The robot correctly follows the path
without disturbing the people participating in the therapy. Fig. 23a illustrates the second test. In
this case, the therapist interacts with the TV, while the other participant does not perform the
activity yet. For this reason, the robot plans an alternative route and does not cross in front of the
therapist (Fig. 23b)4.

The test described in Fig. 23b was reproduce 10 times to evaluate the performance of the
algorithm according to the same variables described in the simulated experiments. The robot always
starts and ends its motion in the same places. Results have been compared with an algorithm without
social navigation, which obviously does not take into account time dependency when planning the
route. The results are presented in Table 4. In this example, the robot performs a more prolonged
displacement using our social navigation framework. However, it avoids interrupting the therapist’s
interaction with the TV. Although most of the time dt is low, the robot navigates behind the

4 Third experiment video: https://youtu.be/RE_g3sHPeGg

 https://youtu.be/RE_g3sHPeGg
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Fig. 21: Left, the robot used for the experiments in real scenarios: Viriato. Right, the laboratory
environment.

(a) (b)

Fig. 22: First real test: A person participates in cognitive therapy at the table. a) set-up and social
mapping of the real test; and b) path planned and elastic band.

(a) (b)

Fig. 23: Second real test: the therapist is setting up a physical therapy on the TV. a) set-up and
social mapping of the real test; and b) path planned and elastic band.

therapist, always keeping away from his personal space. Although this is an initial experiment, in a
straightforward environment, the results show that the robot can reach its goal with an acceptable
time overhead while ensuring that the social interaction spaces are respected.

7 Conclusions and future works

Human-aware robot navigation is a very complex skill that has to take into account situations
involving, among others, human-human, human-robot, or human-object interactions. Getting
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Table 4: Navigation results for the real test shown in Fig. 23

Path Non social behavior
Parameter Value Value

dt (m) 7.2 4.1
τ (s) 58.5 22.1
CHC 8.1 7.2

dtherapist
min (m) 0.9 (back) 0.8

d
participant1
min (m) 1.1 1.5

Ψ (Intimate) (%) 0.0 0.0
Ψ (Personal)(%) 24.2 8.1
Ψ (Social)(%) 10.2 11.3
Ψ (Public)(%) 55.6 81.6

Ψ TV (%) 0.0 35.2

all this information is not trivial, and it requires algorithms that can continuously detect the
people’s intentions in the scenario: does this person want to interact with an object? Are these
people interacting with each other? Extracting this information from the scenario is complex
and challenging to reproduce. Perhaps applying fuzzy logic to infer high-level human intention or
activities could be an exciting approach to solving this problem (3). In addition, fuzzy rules could
provide a way to incorporate non-trivial social intentions in the design of a SAR.

In the case, for instance, of care facilities, some of these interactions are associated with activities
scheduled by the center’s professionals. Something similar occurs in other scenarios, such as museums,
educational institutions or shopping centers. This simplifies obtaining these intentions by allowing
the robots to assume that these spaces are being used at a particular time. Our approach can be
understood as a first step towards introducing in the field of robotics navigation, the broad spectrum
of social conventions suggested by chronemics. However, an exciting challenge about detecting the
time-dependent interactions between persons and objects in real-time arises, furthermore, of how to
act in consequence. Obviously, it is much more complicated than acting according to programmed
activities, but the proposed underlying architecture has the building blocks to support it.

Consequently, taking into account this time-dependence in the social path planning algorithm
is the main novelty of the approach described in this paper. This framework could be applied to
many semi-organized social environments, such as caregiving centers. The proposal is based on
the well-known Dijkstra’s algorithm, where the original free space graph is modified according
to time-dependent social interaction spaces. The navigation framework described in this article
uses a shared representation of the environment and some CORTEX cognitive architecture agents.
The use of CORTEX architecture facilitates the insertion or modification of the software agents in
charge of the different functionalities. A social map is initially built from the people and objects
in the environment and their possible interactions. As not all these interaction spaces have the
same occupation in time, this framework adds temporal information in the planning of the socially
accepted path. The validation of the navigation framework has been done in simulated environments,
where the tests are easily reproducible. Accordingly, the tests conducted in real environments
obtained satisfactory results.

Future work will involve the use of other questionnaires to gather information about the
acceptability of the paths performed. Another line of future work consists of including information
about the role of people in the center. In this way, the morphology of the personal spaces will vary
depending on the type of the person, with the aim, for example, that the robot can approach more
to the center staff or maintain a more significant social distance with new residents.
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37. A. Vega, L.J. Manso, P. Bustos, P. Núñez D.G. Macharet. Socially Aware Robot Navigation
System in Human-populated and Interactive Environments based on an Adaptive Spatial
Density Function and Space Affordances. Pattern Recognition Letters. Vol. 1, Pages 72-84, 2019

38. Weihua C., Tie Z., and Yanbiao, Z.: Mobile robot path planning based on social interaction
space in social environment. International Journal of Advanced Robotic Systems. Volume 1, pp
1–10, 2018.

39. M. Kollmitz, K. Hsiao, J. Gaa, and W. Burgard. Time dependent planning on a layered social
cost map for human-aware robot navigation. In European Conference on Mobile Robotics. 1-6.
2015.

40. A. Bera, T. Randhavane, R. Prinja and D. Manocha. SocioSense: Robot Navigation Amongst
Pedestrians with Social and Psychological Constraints. IEEE/RSJ International Conference on



32 Calderita, et al.

Intelligent Robots and Systems (IROS) September 24–28, 2017, Vancouver, BC, Canada
41. A. Bera, T. Randhavane, R. Prinja, K. Kapsaskis, A. Wang, K. Gray and D. Manocha The

Emotionally Intelligent Robot: Improving Social Navigation in Crowded Environments. IEEE
Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019,
Long Beach, CA, USA, June 16-20, 2019.

42. Kostavelis, I. Robot Behavioral Mapping: A Representation that Consolidates the Human-robot
Coexistence. Robotics and Automation Engineering Journal. Vol. 1, 2017.

43. Haut, M., Manso, L., Gallego, D., Paoletti, M., Bustos, P., Bandera, A., and Romero-Garcés,
A., 2016. A navigation agent for mobile manipulators, in: Robot2015: Second Iberian Robotics
Conference, Springer. pp. 745–756.

44. L. Manso, L. V. Calderita, P. Bustos, and A. Bandera. Use and advances in the active grammar-
based modeling architecture. Journal of Physical Agents2016, pp. 33–38.

45. S. Satako, T. Kanda, D. Glas, M. Imai, H Ishiguro and N. Hagita. How to approach humans?-
strategies for social robots to initiate interaction, 4th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pp. 109-116, 2009.

46. L. Manso, P. Bustos, R. Alami, G. Milliez, and P. Núnez. Planning human-robot interaction
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